70 research outputs found

    A Conceptual Generic Framework to Debugging in the Domain-Specific Modeling Languages for Multi-Agent Systems

    Get PDF
    Despite the existence of many agent programming environments and platforms, the developers may still encounter difficulties on implementing Multi-agent Systems (MASs) due to the complexity of agent features and agent interactions inside the MAS organizations. Working in a higher abstraction layer and modeling agent components within a model-driven engineering (MDE) process before going into depths of MAS implementation may facilitate MAS development. Perhaps the most popular way of applying MDE for MAS is based on creating Domain-specific Modeling Languages (DSMLs) with including appropriate integrated development environments (IDEs) in which both modeling and code generation for system-to-be-developed can be performed properly. Although IDEs of these MAS DSMLs provide some sort of checks on modeled systems according to the related DSML\u27s syntax and semantics descriptions, currently they do not have a built-in support for debugging these MAS models. That deficiency causes the agent developers not to be sure on the correctness of the prepared MAS model at the design phase. To help filling this gap, we introduce a conceptual generic debugging framework supporting the design of agent components inside the modeling environments of MAS DSMLs. The debugging framework is composed of 4 different metamodels and a simulator. Use of the proposed framework starts with modeling a MAS using a design language and transforming design model instances to a run-time model. According to the framework, the run-time model is simulated on a built-in simulator for debugging. The framework also provides a control mechanism for the simulation in the form of a simulation environment model

    A Metamodel for Jason BDI Agents

    Get PDF
    In this paper, a metamodel, which can be used for modeling Belief-Desire-Intention (BDI) agents working on Jason platform, is introduced. The metamodel provides the modeling of agents with including their belief bases, plans, sets of events, rules and actions respectively. We believe that the work presented herein contributes to the current multi-agent system (MAS) metamodeling efforts by taking into account another BDI agent platform which is not considered in the existing platform-specific MAS modeling approaches. A graphical concrete syntax and a modeling tool based on the proposed metamodel are also developed in this study. MAS models can be checked according to the constraints originated from the Jason metamodel definitions and hence conformance of the instance models is supplied by utilizing the tool. Use of the syntax and the modeling tool are demonstrated with the design of a cleaning robot which is a well-known example of Jason BDI architecture

    Modelling Contiki-Based IoT Systems

    Get PDF
    In this paper, we investigate how model-driven engineering (MDE) of Internet of Things (IoT) systems and Wireless-Sensor Networks (WSN) can be supported and introduce a domain-specific metamodel for modeling such systems based on the well-known Contiki operating system. The unique lightweight thread structure of Contiki makes it more preferable in the implementation of new IoT systems instead of many other existing platforms. Although some MDE approaches exist for IoT systems and WSNs, currently there is no study which addresses the modelling according to the specifications of Contiki platform. The work presented in this paper aims at filling this gap and covers the development of both a modeling language syntax and a graphical modeling environment for the MDE of IoTs according to event-driven mechanism and protothread architecture of Contiki. Use of the proposed modeling language is demonstrated with including the development of an IoT system for forest fire detection

    A Model-Driven Engineering Technique for Developing Composite Content Applications

    Get PDF
    Composite Content Applications (CCA) are cross-functional process solutions built on top of Enterprise Content Management systems assembled from pre-built components. Considering the complexity of CCAs, their analysis and development need higher level of abstraction. Model-driven engineering techniques covering the use of Domain-specific Modeling Languages (DSMLs), can provide the abstraction in question by moving software development from code to models which may increase productivity and reduce development costs. Hence, in this paper, we present MDD4CCA, a DSML for developing CCAs. The DSML presents an abstract syntax, a concrete syntax, and an operational semantics, including model-to-model and model-to-code transformations for CCA implementations. Use of the proposed language is evaluated within an industrial case study

    Engineering Multi-Agent Systems: State of Affairs and the Road Ahead

    Get PDF
    The continuous integration of software-intensive systems together with the ever-increasing computing power offer a breeding ground for intelligent agents and multi-agent systems (MAS) more than ever before. Over the past two decades, a wide variety of languages, models, techniques and methodologies have been proposed to engineer agents and MAS. Despite this substantial body of knowledge and expertise, the systematic engineering of large-scale and open MAS still poses many challenges. Researchers and engineers still face fundamental questions regarding theories, architectures, languages, processes, and platforms for designing, implementing, running, maintaining, and evolving MAS. This paper reports on the results of the 6th International Workshop on Engineering Multi-Agent Systems (EMAS 2018, 14th-15th of July, 2018, Stockholm, Sweden), where participants discussed the issues above focusing on the state of affairs and the road ahead for researchers and engineers in this area

    Model-driven development of multiagent systems: a survey and evaluation

    No full text
    WOS: 000330476300004To work in a higher abstraction level is of critical importance for the development of multiagent systems (MAS) since it is almost impossible to observe code-level details of such systems due to their internal complexity, distributedness and openness. As one of the promising software development approaches, model-driven development (MDD) aims to change the focus of software development from code to models. This paradigm shift, introduced by the MDD, may also provide the desired abstraction level during the development of MASs. For this reason, MDD of autonomous agents and MASs has been recognized and become one of the research topics in agent-oriented software engineering (AOSE) area. Contributions are mainly based on the model-driven architecture (MDA), which is the most famous and in-use realization of MDD. Within this direction, AOSE researchers define MAS metamodels in various abstraction levels and apply model transformations between the instances of these metamodels in order to provide rapid and efficient implementation of the MASs in various platforms. Reorganization of the existing MAS development methodologies to support model-driven agent development is another emerging research track. In this paper, we give a state of the art survey on above mentioned model-driven MAS development research activities and evaluate the introduced approaches according to five quality criteria we define on model-driven MAS engineering: (1) definition of a platform independent MAS metamodel, (2) model-to-model transformability, (3) model-to-code transformability, (4) support for multiple MAS platforms and finally (5) tool support for software modeling and code generation. Our evaluation has shown that the researchers contributed to the area by providing MDD processes in which design of the MASs are realized at a very high abstraction level and the software for these MASs are developed as a result of the application of a series of model transformations. However, most of the approaches are incapable of supporting multiple MAS environments due to the restricted specifications of their metamodels and model transformations. Also efficiency and practicability of the proposed methodologies are under debate since the amount and quality of the executable MAS components, gained automatically, appear to be not sufficient.Scientific and Technological Research Council of Turkey (TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [109E125]This work is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG) under grant 109E125. The author also wishes to thank the anonymous reviewers for their accurate comments on the previous versions of the paper. He was able to improve both his work and the paper significantly by taking their critical comments into account

    Model-driven development of multiagent systems: a survey and evaluation

    No full text

    The Need for Model-driven Engineering in the Development of IoT Software for Public Transportation Systems

    No full text
    15th Turkish National Software Engineering Symposium (UYMS) -- NOV 17-19, 2021 -- ELECTR NETWORKThe specific requirements of developing Internet of Things (IoT) software for public transportation systems should be considered in addition to the problems always observed in IoT system development. After defining the problems encountered in the development of IoT-based public transport systems, the current model-driven engineering (MDE) approaches for IoT development are examined and their applicability for public transport systems is questioned in this paper. Several points of view are given about what new MDE approaches specific to this field should include in order to eliminate the identified deficiencies. Moreover, it is indicated that new MDE approaches should be designed including round-trip engineering to provide high mobility, use of special standards, in-vehicle communication networks and support for different system-on-chips in these public transportation systems.Ege Univ,Izmir Inst Technol,Gazi Univ,IEEE Turkey Sect,Huawei,Kuveyt Turk Arge Merkezi,Logo,Dalya Turizm Kongre Organizasyo
    • 

    corecore